Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles.

نویسندگان

  • Jinghai Liu
  • Yuewei Zhang
  • Luhua Lu
  • Guan Wu
  • Wei Chen
چکیده

A natural self-regeneration step for urea derived graphitic carbon nitride with platinum nanoparticles is found by simply opening the system to air in the dark under ambient conditions, following its solar-driven hydrogen production. The produced peroxides deactivate the graphitic carbon nitride. Release of weakly bound peroxides on the polymeric semiconductor surface is a crucial process for regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production.

Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was use...

متن کامل

Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride**

The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low-cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g-C3N4) from a low-cost precursor, urea, is reported. The g-C3N4 exhibits an ext...

متن کامل

Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light.

Platinum (Pt) nanoparticles with <4 nm diameter loaded on graphitic carbon nitride (g-C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to...

متن کامل

Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting

Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usu...

متن کامل

Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water.

Developing new methods to improve the photocatalytic activity of graphitic carbon nitride (g-C₃N₄) for hydrogen (H₂) evolution has attracted intensive research interests. Here, we report that the g-C₃N₄ exhibits photocatalytic activity for H₂ evolution from pure water. And, the activity is dramatically improved by loading highly dispersed conductive polymer nanoparticles. The H₂ evolution rate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 48 70  شماره 

صفحات  -

تاریخ انتشار 2012